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Abstract

We develop a partitioning algorithm to decompose complexd2ita into small simple subregions foffective parallel quad
meshing. We formulate the partitioning problem fdieetive parallel quad meshing as a quadratic integer opditioiz problem
with linear constraints. Directly solving this problem spensive for large-scale data partitioning. Hence, we ssigg more
efficient two-step algorithm to obtain an approximate solutféinst, we partition the region into a set of cells using Centroidal
Voronoi Tessellation (CVT), then we solve a graph partitignon the dual graph of this CVT to minimize the total pastiiing
boundary length, while enforcing the load balancing andheabregion’s connectivity. With this decomposition, ®gions are
distributed to multiple processors for parallel quadetat mesh generation. We demonstrate that our decomposiltimrithm
outperforms existing approaches bffesing a higher-quality partitioning, and therefore, img¥d performance and quality in
mesh generation.
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1. Introduction

In recent years, the acquisition or generation of large tnégolution geometric datasets pose new challenges to
the design of fective processing algorithms. These big and complex dataxgrensive to model and analyze using
existing sequential algorithms, as the limited CPU and nrgrace often instficient to handle billions of elements
efficiently. Parallel algorithms utilizing high-performancemputers make it possible to solve large and complex
problems #iciently on hundreds or thousands of computing clusters stfterefore desirable.

Divide-and-conquer is a natural anffextive strategy in parallel mesh generation for large génmeata. The
given region or object s first decomposed into a set of sdévabd simplified subparts; then each subpartis distributed
to a working processor for mesh construction; finally, indially generated meshes are merged to get the final result.
Parallel mesh generation strategies such as Delaunag-betbods and advancing front techniques have been used
for both triangulation [1-3] or tetrahedralization [4,5Following this general paradigm, in this work we aim to
develop a partitioning algorithm on comlex and large-s@@leegions for parallel quadrilateral mesh generation.

In geometric processing through divide-and-conquer, #rétfpning of data often directly dictates the algoritism’
efficiency and quality. We formulatbree main criteria as follows: (1) The areas of the subregions should be similar
(2) The boundary length of each subregion should be smalpeoed with it's area; and (3) Each subregion should
have desirable geometric property, and more specificallygfmd meshing, it should have corner angles close to
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kr/2,k € {0, 1, 2, 3}. Thefirst two criteria determine the parallel performance: the balance of wortt twaditerent
processors, and the communication cost among processdisiefit parallelization should balance the workload
distributed to diferent processors and should minimize interprocessor canation to reduce synchronization and
waiting. Thethird criterion on the subregion’s geometnffacts the quality of the final quad tessellation. For
example, on a square subregion one can generate a quad merghewéry element is uniform and not sheared; but on
atriangle subregion, the smallest angle of the resulteed gquesh will inevitably be smaller than the smallest boupdar
angle of this triangle patch. Hence, foffextive quad mesh generation, it is desirable to partitiemgbometry
into subregions whose boundary angles are keg2 to construct less-sheared quad elements. To incorpdrate t
geometric constraint in data partitioning, however, is eimes prohibitively expensive. We will discuss this isgue
Section 3 and propose a mor@eent strategy to tackle it.

After data partitioning, we distribute subregions téfelient working processors for mesh generation. In our im-
plementation, we use consistent boundary samplingaadncing fronfor parallel meshing on each subregion. The
sub-meshes are finally merged together then a relaxaticerfiermed to get the final result. Tineain contributions
of this paper include:

o We study geometry-aware data partitioning félieetive parallel mesh generation, and suggest new models to
partition large and complex 2D regions into subparts withirddle geometric shapes for quad meshing. Compared
with existing partitioning algorithms, our approach colédd to more fficient parallel processing and higher-
quality meshing results.

¢ We develop a parallel computing framework for quad mesh igeios of large-scale 2D regions. It cafiectively
utilize parallel computational resources to handle bigngeinic data. We demonstrate an application in coastal
modeling where massive-size coastal terrains and oceadsade discretized for simulations.

2. Related Work
2.1. Data Partitioning

Given a geometric regiohl, a set of componentd/;} is apartition of M if (1) their union isM, i.e.,U; Mj = M,
and (2) allM; are interior disjoint, namely/;.jM? N M; =0, whereM? = M;\dM, is the open set of;. Depending
on the geometric processing applications, partitionirfpmégues consider fierent criteria accordingly. Thorough
surveys on geometric partitioning algorithms have beeerg[é,7] for computer graphics and geometric modeling
applications; some data benchmarks [8] have been builtvduating these methods in these graphics applications.

Slightly different from the partitioning criteria considered in graghépplications, in order to obtairffective
data partitioning for parallel computing, partition sagies can be classified into two categoriegtrinsic space
partitioning andintrinsic manifold partitioningnethods.

We call the first strategy thextrinsic space partitioningnethod, because it partitions data by partitioning the
data’s embedding space. For example, data can be decontpospdtial subdivision or partitioning structures such
as quad-tree or octree [9], agptanes [2], or blocks [10]. In parallel data processingéitare, a very popular extrinsic
space partitioning strategy is thpace filling curve[11,12]. The idea is to first fill th&l-dimensional space with a 1-
dimensional curve and establish a bijective map betwedsioghe space and curve segments passing thefferBint
regions (cells) in the space are therefore indexed by tiigecand partitioning of the space (therefore, partitigron
data) is obtained by partitioning the curve accordinglygémeral, data (space) partitioning using space-fillingesir
or other extrinsic space partitioning methods is veficeent, as demonstrated in several successful applicasach
as computational physics, algebraic multigrid, PDE sa@)yedaptive mesh refinement [13,14]. However, algorithms
based on spatial partitioning are not suitable to handla tiatt have complex geometry or nonuniform properties.

We call the second category tirinsic manifold partitioningmethod, and it partitions the data model on its in-
trinsic tessellation. The data are discretized into a mestgoaph, where elements or nodes are clustered into ssbpart
directly [15] or recursively [16]. Among this category, aifiextive and widely used strategy is callg@ph partition-
ing [17-21], which usually produce good-quality partitionsiwhalanced load and reduced communication. Solving
the graph partitioning is NP-complete, and sevefi@ative strategies include spectral bisection [18], Keghim-Lin
algorithm [17] and the multi-level scheme [19]. The spddbisection algorithm [18] uses the spectral information
to partition the graph. The eigenvector of the Laplacianrix@ computed to bisect the graph. Spectral Bisection
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usually produces a good partitioning, however it is veryemgive to compute, especially for large matrix. On the
other hand, the Kerninghan-Lin algorithm [17] is a fast h&io scheme. It starts with an initial bipartition of the
graph, then iteratively swaps a subset of vertices from pactto reduce the energy. This algorithm is fast, however,
the initial partition is critical but often not easy to obitai The multi-level method, including the widely adopted
algorithm'softwareMETIS[19], uses a three-phase scheme: first, the graph is singpti@ coarse graph; then a
partitioning is performed on the coarsened graph; finatg, partitioning is modified during the progressive graph
refinement. These existing graph partitioning algorithout on only tackling the load balancing and communi-
cation reduction issues. However, only considering thesecriteria is instficient. Incorporating extra geometric
constraints is often critical in geometric modeling apations. The Medial Axis Domain Decomposition (MADD)
algorithm [22] merges triangles to eliminate small angtesitsolves a graph partitioning on dual graph of the merged
mesh. Subregions constructed using MADD partitioning ligymssess larger corner angles than METIS. For our
problem, it is desirable to have perpendicular corner angléherefore, a geometric term to incorporate this angle
constraint can be formulated and included intoghaph partitioningmodel. Furthermore, an additional connectivity
constraint is needed to ensure each subregion form only emeected component. However, solving the original
graph partitioning is already NP-hard, and the incorporatif these extra geometric constraints will further signif
icantly increase the complexity of the problem (see Secdidor details). This makes thefeient solving of this
problem highly challenging.

2.2. Quadrilateral Mesh Generation

Quadrilateral mesh generation has been studied in comguatehics and geometric modeling fields. Quad meshes
can be constructed through either thdirect or direct approaches. Thiadirect approaches first generate an inter-
mediate structuyéessellation that can be easily constructed, e.g., a idangsh, then convert it into a quadrilateral
mesh [23]. One big drawback of this method is that the layétiteunstructured elements in the intermediate tessella-
tion determines the layout of final quad mesh, and there aralys large number of singularities (i.e., non-valance-4
vertices) in the resultant quad meshes, which are usuatlgsirable for ficient simulation. Thelirect approaches
construct quads on the model directly. Related techniquedsde quad-tree ([24]), template-guided decomposition
([25]) and advancing front([26]). A related problem is theadrilateral mesh generation on curved surfaces. [27] gave
a good survey on this topic. However, the curved geometrg paira challenges in quad mesh generation and many
recent surface quad meshing algorithms [28,29] use a craseeffield to guide the construction of the quad meshes.
Finding an optimal cross frame field reduces to nonlineageat programming, which is computationally expensive
for large-scale geometric regions. Another related prokikethequad layout patcttonstruction [30]. Its goal is to
partition a surface into topologically rectangle patchgmn which quad meshes can be constructed. In this paper,
we didn’t adopt this strategy, because the topologicaltraimd on restricting subregions to be “4-sided polygoss” i
very expensive to enforce.

3. Region Partitioning

Data partitioning is the first step in a divide-and-conquanfework for parallel computational models. A good
partitioning with balanced workload and small interpracesmmunication helps improve computationi@ilagency.
Furthermore, in our parallel meshing problem, a good dattitipaing is also critical in generating high-quality glia
elements. We use three criteria to quantitatively evalagtartitioning:workload balance, total separator length,
and separator angle deviation Graph Partitioningis a suitable strategy to solve our partitioning, becausait
systematically model and optimize these criteria. In thigion, we will first introduce the related notation (Sed)3.
and formulation of the three criteria (Sec. 3.2, 3.3 and 8%)theConnectivity ConstraintéSec. 3.5), then propose
our algorithm in Sec. 3.6.

3.1. Notation

Given atessellatiom = (VM, EM, FM) of a 2D region, wher&™, EM, FM are the sets of vertices, edges, and faces
(cells) respectively, le& = (VC, E®) denotes its dual graph, whevé&, EC are the node and arc sets respectively. A
nodev € VC corresponds to a cell dfl. Two nodess, v, € VC are connected by an arc if their corresponding cells
are adjacent, namely, share an edge. Therefore, each Eftao corresponds to an edgeBf. The weight of a
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nodev € V© is defined to be the area of its associated tedlF™, and an arc’s weight is defined as the length of its
associated edge. The partitioning @rcan be computed on the dual grah A k-way Graph Partitioningdivides
V€ into k connected components, each of which is a subregion thabajlirocessed individually. In practideway
partitioning is usually solved through recursive biset{ib9]. Hence, we recursively partitidd into two sub-graphs
Go = (V. E®) andG; = (V& E®), whereV®: = VC \ V®. This also partitions cells in the original tessellatidn
into two setsMo and My, if an edgee € M is shared by two cell$;, f; from distinct subsetsf; € Mo, f; € My, then
edgeeis called aseparator.

For each node® € V¢, we assign a variable,

« = 0, if V& eV®
A BN VPRVER

Then for each aref} = [V?, V7], we assign a variablg; = x — x;:

~_{lor -1, if 2 and Vfare in two sub-graphs
Yi=\o, otherwise '

We havey = Ux, wherex andy are node and arc variable vector respectively, drid a|E®| x [VC| matrix. With
these variables, we formulate the three criteria as follows

3.2. Workload Balance

Load balancing refers to the practice of distributing appmately equal amounts of work among tasks, so that
all tasks are kept busy all of the time. Unbalanced workloetivben working processors leads tofiiéency in
parallel computing, as the slowest task often determinesterall running time. In our problem, the workload on
each working processor can be estimated by the area of eaobgson to mesh. On the dual graph, the subregion
area can be calculated using the sum of weights of nodes totihesponding subgraph.

A balanced partitioning should avoid big are&felience between subregions. Hence, it is formulated as the fo
lowing constraint:

g <xX'wy—c<ocy, (1)
wherex = (X1, Xz,..., %' is the variable vectomy, = (W, W, ... ,an)T is the node weight vectog, = %Zi Wy,
andc;, c; are the constant thresholds (in our experiments; ¢, = 0.1c).

After ak-way partitioning is obtained, its workload balance can taweate by the ratio between the areas of the
largest and smallest subregions:

Rw = Amax/Amin» (2)
where Anax and Anin are the areas of the largest and smallest subregions reghecRy close to 1 means better
workload balance.

3.3. Total Separator Length

In parallel computing, inter-process communication meaverhead. A smaller total separator length usually
indicates less communication cost. In our geometric dattitipaing, a smaller separator length also indicates
(1) smoother subregion boarder lines, (2) better geometticpactness of subregions, and (3) mdfeient post-
processing refinement (see Section 4). Therefore, it isai@sito minimize theotal separator length

Ls = yTWey = x"UTW,Ux, (3)

wherey = (Ye,» Ve, - - .,yaq)T is the edge variable vectol. = diagfwe,, We,, . . . , We,) IS & diagonal matrix composed
of arc weights.
With the above two criteria, solving a graph partitioning ¢ee formulated as:

min x"UTWUX,
subjectto ¢ < X'wy — € < Cy, (4)
x € {0, 1}.
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Optimizing problem (4) is NP-hard. For large data, multeschemes such as METIS [19] have been widely
adopted to obtain good approximate solutions. Figure ktiliies a simple example. The input tessellatibris
shown in (a) and the partitioning result by METIS [19] is shoim (b). The two partitioned subregions colored in
blue and red respectively. We can see that the two subrelgamesthe same area with total separator length minimized.

Minimizing the total separator length will makes the bounydaf subregions straight, and it can increase the
compactnesef each subregion. On each subreghdn the compactnessan be measured by the ratio between the
boundary separator’s length bf; and the area dff;. Globally, we can compute average compactness ratio

Ls
kAw’
wherek is number of subregions, am¥, is the total area of the region. Smallgg comes from a smallels and
indicates better compactness.

Re = (5)

3.4. Separator Angle Deviation

Solving the graph partitioning formulated in Eq. (4) willstet
in balanced area and minimized total separator length. Mexye
in many geometric processing tasks, constraints on the ggpm
of subregions are important. In our quad meshing probleeslig
each subregion should look like a square. Less strictlgesime use
the advancing front technique to generate quad meshesq®ddt L
it is desirable to have angles between separators clogb fbhere-
fore, we include a new separator angle term into graph fuarititg
to penalize each such angle’s deviation fr@m

Angle Deviation Function. Consider the original tessellatidvi (a) (b) (©)
of the given 2D region, suppose two edge®; € EM share a vertex
vand form an angle, ;. For concise representation, in the following, Fig. 1: Graph Partitioning on a simple example. (a)
we uselnc(i, j) = 1 to denotes ande; are incident, andnc(i, j) = 0 The original mesh; (b) the two (red and biue) subre-

. . . . gions obtained by METIS [19]; (c) the partitioning
means they are not incident. We definesaugle deviation function result with separator angle deviation considered.

P {minknei,,- - ¥ ke {0,1,2,3}}, if Inc(i,j)=1
O —

0, if Inci, j) = 0 6)

to describe the deviation from andig to the neares‘% angle.
Accumulated separator angle deviatiorcan then be formulated as

Dy = y"Wyy = x"UTW,Ux, 7
0 6y, 6615 - - - Ot

wherey = (Ye,.Ye,..-..Ye,)' is the edge variable vector, aid, = O O oo %620 , Wy is an|EC| x |EC|
Sy e O

matrix storing deviation angle%, ;. This angle deviation matri¥V, can be precomputed by traversing all the edge
pairs of the tessellatioM once.
Furthermore, we can show that Eq. (@)l evaluate and only evaluate the angle deviation betwadjacent
separators Suppose two edges = [u, V], e; = [u, W] are incident separators, sharing vertexrhen, (1)y, # 0 and
Ye; # 0, and (2)v andw belong to the same subregion and have a same indicator waléeg,. From (1) and (2), itis
not difficult to see thay,, andye, are both-1 or both+1. Therefore, aon-negative contributiody, ; will be added to
the accumulated separator angle deviafilgn To obtain a geometrically desirable partitioning, we canimize the
separator angle deviation term (7) together with total stpalength (3), with the workload balance constraint (1).
Finally, after the partitioning, we can numerically evakitheaverage separator angle deviation

80 = Ni( Z 69”'), (8)

C Inc(i,j)=1
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whereNc is the total number of corners formed by incident separafidie smalle®y is, the better.

3.5. Connectivity Constraints

Currently we have formulated the three criteria. To guaarthe result is a bipartitioning, we need to impose
the connectivity constraintwhich is often not explicitly considered in existing grapértitioning literature, due to
its complexity. Specifically, nodes in each subregion sthdatm one connected component. Without explicitly
enforcing this, although minimizing total separator ldngften tends to penalize the partition that produces maltip
disjoint subsets, we can sometimes observe that more tleacarmected components exist in one subregion.

To enforce connectivity of each subregion, we can formulagefollowing explicit constraint. Given a (dual)
graphG = (V©,E®), for any pair of non-adjacent nodesv, we define a node s& c V \ {u,v} to be anode-
cut setthat separates andyv, if there is no path betweem andv after S is removed fromG. For example, in
the graph shown in Fig 2, for node pak, 4}, {2,5, 7} is a node-cut set an{8, 6, 8} is another node-cut set. For
{u,v} that [u,v] ¢ EC, we definel'(u, V) to be the set consisting of all the node-cut set$upf}. In this example,
'L, 4)=1{{25,7},{2,5,8},{2,6,7},{2,6,8},{3,5,7},{3,5,8},{3,6, 7}, {3, 6, 8}}.

The connectivity constraint can be described as: between pair of

nodesu, v that are in the same subregion, any node-cut s&(unv) must ° °
have at least one node being assigned to this subregiong tthenbinary *
variablex; defined previously, the connectivity constraints can benfor O=0=0=C

lated as a set of linear constraints. For any two non-adjatstes in sub- w

graphGs:

Z Xw > X + % — L,VS € I(u,v), for ¥xy = x, =1,[u,v] ¢ ES,  (9) Eci)%stzr;iﬁp example graph for connectivity
weS .
meaning that every node-cut set must have at least one nougdssigned as 1. Similarly, for any two non-adjacent

nodes in subgrapBg:

Z Xw < Xy + Xy + S| — 1, ¥S € I'(u, V), for ¥x, = x, = 0,[u,v] ¢ EC. (10)

weS

These constraints ensure that there is at least one patleaimmnnon-adjacent nodesindyv if they are grouped to a
same subgraph.

By incorporating both theeparator angle deviatio(Eq. 6) andconnectivity constraint§Egs. 9,10) into graph
partitioning, the quadratic integer programming probleithwinear constraints can be solved through branch-and-
bound algorithm. In our implementation, we use the opememBasic OpeN-source Mixed INteg@BONMIN)
solver from [31] to obtain a solution. To solve mixed integen-linear programming problems, BONMIN allows
one to choose optimization strategies including branalmboouter approximation (OA), Quesada Grossman branch-
cut, and Hybrid OA based branch-cut.

Figure 1 (c) shows the solution of this new graph partitigniith the minimization of separator angle deviation
and the enforcement of connectivity constraints, a paritig more suitable for quad mesh generation is obtained.
However, because (1) incorporating separator angle dewiaignificantly increase the numbers of non-zero cross
multiplication of indicator variables, and (2) the enfargent of connectivity introduces an exponential number of
linear constraints. Solving such a new problem becomeslgitiviely expensive for even moderately large problem.

3.6. Our Two-Step Partitioning Algorithm

We proposed a two-stage partitioning scheme to incorptiatevo new constraints discussed in the last section.
A key observation this idea based upon is thhthe cells of the initial tessellation has near-square igedry, then
the partition performed on the dual graph of this tessatlatiends to have smaller separator angle deviatidance,
first, we useL,-CVT to generate a tessellation with cells similar to sqad&ec. 3.6.1); second, we solve our graph
partitioning on this tessellation to get a set of subregiwits balanced workload and small total separator length,
with connectivity constraints enforced on the subgraph&duheir refinement.(Sec. 3.6.2) We call this algorithm a
L.-CVT-GPalgorithm for short, and the idea is illustrated in Fig. 3.
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@  © Q @p=4 (bp=6 (Op=-8

Fig. 3: Partitioning a 2D “Key” Region for Parallel Quad Mesh
Generation. (a) The input 2D boundary; (b)-norm CVT on the
input boundary; (c) our partitioning result, withfiéirent subre-
gions indicated using fierent colors.

Fig. 4: Lp-CVT using diferentp values. The results are similar
whenp >= 8. In our experiments, we usg-CVT to approximate
Lo-CVT.

3.6.1. L, Centroidal Voronoi Tessellation

The Voronoi diagram is a fundamental geometric structuigelyiused in various fields, especially in geometric
modeling and computer graphics. A 2Bronoi Diagramof a given set of distinct point& = {x;}I, in R? is defined
by a set of Voronoi cell$Q;}! ; where

Qi = {x € R IIx = xill < [Ix = xjll, Vj # i}.

These pointx are calledsites Each Voronoi celk); is the intersection of a set of half-planes.Glipped Voronoi
Diagramfor the sitesX within a given 2D domai is the intersection of the Voronoi Tessellation and the darfa
denoted by{Qi|q,i = 1,...,n}, where

Qilg = {X € QX = xill < IIx =Xl Y] #i}. (11)

In other wordsQjlo = Qi N Q. The Centroidal Voronoi Tessellatio(CVT) is that each site of the Voronoi cell is
coincident to this cell’'s centroid.
The L, Centroidal Voronoi Tessellation Energy [32] can be de-

./

FOO =Fuse o) = D) [ ly-xifdy  (12)

Lo

where||z|l, = (3; |z,-|p)'5, z;j is the j-th coordinate of a 2D poird.
Figure 5 shows the trajectory withfterentp. With the increase of

0.0 0.5

p, the trajectory approximates to the square. Thg trajeaibly, is Fig. 5: The trajectory of.p(x.y) = 1 with differentp
a perfect square, where the, norm of ad-dimensional vectoz is values. With the increase gfthe trajectory gradually
the maximal component ip, ||Z|l. = max; |z]|. For dficient CVT approximates the unit squaré..(x,y) = 1 gives a

computation, we choose affgiently largep to approximate thé., square.

norm. This also allows us tdféciently compute the gradient &f(X)
of Eqg. (12). We test,-CVT on the key model using fferentp
values. And as the results illustrated in Figure 4, wpen 8, the diference ofL,-CVT energy becomes very small,
so we use_g-CVT to approximaté...-CVT in all our experiments. Since we usgwhich is smooth, the optimization
of CVT energyF can be solvedféciently using the quasi-Newton BFGS solver [33].

In summary, the algorithm to compute thg-CVT on the input 2D regio has four steps.

1. Get a uniformly sampled sites s€t In our implementation, we simply embé&bon a spatial grid, the grid points
insideQ are the initial sites.

2. Use the sweeping line algorithm [34] to construct théahWoronoi Diagram.
3. Getthel,-CVT tessellation by optimizing CVT energy.
4. Clip the CVT usingQ to get theL,-CVT of Q.



8 W. Yu and X. Li Procedia Engineering 00 (2015) 000-000

3.6.2. Graph Partitioning Based onJ-CVT

After solving theL.,-CVT, we get a tessellatioM of the 2D region. Then oM’s dual graphG, we solve the
graph partitioning formulated in Eq. (4). Following the histics used in [19], instead of explicitly enforcing the
large number of connectivity constraints in Eqgs. (9, 10),o&a adopt a region growing examination to check the
connectivity of each subregion, disconnected elementbeijrouped into the other subregion automatically. During
our optimization, after everl iterations, we perform such an examination and upda®®.dn practice, this strategy
is efficient and &ective in enforcing the connectivity of subregions.

We test diterent partitioning results on the Key model using (a) oadigraph partitioning by METIS, (b) geometry-
integrated graph partitioning solver introduced in Sewi8.4 and 3.5, and (c) this two-step-CVT-GP algorithm.
We also evaluate the workload balancing r&jg, average compactneBs, and average separator angle deviadign
on these partition results. Using these three partitionieghodsRy are 113, 114, and 118, respectivelyRc are
1.11, 115, and 118, respectively, andy are 026, 012, and 015, respectively.

As expected, the graph partitioning without geometric tamst focuses on workload balance and separator
lengths, and gets beRjy andRc, but very bad angle deviation. The expensive geometrgiated graph partitioning
produces smallest angle deviation. This two-dtepCVT-GP produces results with slightly wor&gy, Re, anddy
than that from the geometry-integrated graph partitionBugf its separator angle deviation is significantly betbeart
the original graph partitioning, and its speed is signiftbafaster than geometry-integrated graph partitioningurif
thorough comparisons will be given in Section 5.

Through the_.,-CVT, we can also directly obtain a region partitioning. U€ls a partitioning stlicient, so that we
no longer need to further solve a graph partitioning? Thisiee illustrates that the two-stdp,-CVT-GP algorithm
usually leads to a better data partition for the parallelhires problem. One observation is that: with therease
of the number of Voronoi sitéells, the decomposition from tCVT will become more uniform (better workload
balancing) and more square-like (smaller separator angdgidtion) We have performed extensive experiments on
L.-CVT to verify this. Table 1 is the partitioning statistica the key and the pipe model. If we directly evaluate the
quality of the partitioning suggested by the CVT decompasjtwhen the number of Voronoi cells increases from
16 to 128, the workload balancing ratiy (Eq. (2)) reduces from.65 to 123, while the average separator angle
deviationéy also reduces from.26 to 018.

Table 1: Partitioning on the Key and Pipe models using diB(T versus using our CVT-GP algorithns is the number of subregionBy, Re,
anddy are the workload balance ratio, average compactness, amap@vseparator angle deviation.

Key Pipe
CVT/CVT-GP CVT/CVT-GP
Ns 16 32 128 32 64 256

Ry | 1.691.15 | 1.451.24 | 1.231.11 | 1.891.31 | 1.651.31 | 1.4¥1.27
Re | 1.271.11 | 2.2Y2.01 | 9.419.24 | 1.821.77 | 4.043.88 | 18.17Y17.84
oo | 0.260.21 | 0.270.16 | 0.180.17 | 0.230.20 | 0.1§0.15 | 0.140.12

We have the following observations.

e For ak-way partition, direct partitioning through la.-CVT decomposition withk cells will lead to a worse
partitioning result than our two-step algorithm (whichtfgeneratea cells ( > k) then performs a graph partition
to getk subregions).

e In order obtain a partition with similaRy andod,, directLo-CVT decomposition should use more sites. But this
will increase the total separator length, resulting in kiggverhead and more singularities.

And we conclude that the.,-CVT-GP algorithm dfers a better partition than the dirdct,-CVT decomposition.
More comparisons will be given in Section 5.
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4. Quad Mesh Generation
4.1. Parallel Quad Meshing on Subregions

After the entire 2D region is partitioned, subregions carséet to diferent processors for simultaneous mesh
generation. Oferent quad meshing techniques can be applied on the sulmse@ne requirementis to make sure the
neighbouring subregion boundaries should have consigtetes. We use thedvancing front technique[26] to tile
the interior regions with quads. To ensure the individuedlpstructed sub-meshes can be composed directly, we need
to sample boundary vertices consistently on the shared@@dgacent subregions. We use a simple sampling scheme:
first, we compute an average edge lengflom input boundary line segments, then on each interiotitfaring
boundary curves we evenly sampléﬁ points, wherds is the length ofS. To ensure the valid generation of a full
quad mesh, the number of the points on the subregion bounaasiybe even [26], therefore, each interior separator
line segments is subdivided into two to ensure the numbearoped boundary vertices is even.

The advancing front algorithm initiates a wave front frora boundary of each subregion, along which quadrangles
are constructed inwards until all empty regions are tiled.ifplement the advancing front following [26]. The wave
front propagates until the front has 6 or fewer vertices, bgmwa template is used to finish the quad mesh generation.
Readers are referred to [26] for details.

4.2. Post-processing after Composition

After composing meshes of subregions, we perform a Laplaeiaxation on vertices near separators to improve
the smoothness of the orientations of mesh elements on ttidqrang boundary. Each vertex moves towards the
mass center of its neighboring vertices. Since our paniitip algorithm minimizes the total separator length, this
relaxation only applies to a small number of vertices anédakshort time to process. In our experiments, up to 50
iterations are applied to each vertices within a five-rinffdauzone surrounding separators. In our implementation,
we didn’t parallelize this post-processing. But naturahys refinement can be easily parallelized if needed.

5. Experimental Results

We perform experiments on our high performance computiastets, SuperMIC, which consist of 128 computing
nodes. Each node has two 2.6GHz 8-Core Xeon 64-bit Proceasdr32GB memory. Five datasets have been tested:
a key model with 21.6M boundary segments and 1 inner holepa mpiodel with 57.6M boundary segments and 9
holes, and three coastal oc#amrain regions : the Gulf of Mexico, Matagorda Bay, and West, with 230M, 250M,
and 550M boundary vertices, respectively. The generatesthesof the two bays and the Gulf of Mexico have about
3, 4.5, and 10 billion elements, respectively.

We compare algorithms in three aspects: gcomposition Quality: the workload balance ratio, total separator
length, and separator angle deviation. P3rallel Computation Efficiency. the running time on each working
processors and the total speedup in quad meshindv€3hing Quality: the scaled-Jacobian of quad elements and
number of singularities of the final mesh.

Our experiments are designed to compare 4 decompositidmoehet (1) Partitioning via diredt,.-CVT, (2) Par-
titioning by METIS [19], a very widely used Graph Partitiogi solver, (3) Partitioning by Medial Axis Domain
Decomposition (MADD) [22], and (4) Our.,-CVT-GP algorithm.

5.1. Partitioning Quality Comparison

Figure 6 illustrates the four partitioning results on thg &ad pipe models. Table 2 gives the partitioning statistics
for key and pipe model respectively. The workload balantie iRy is calculated following Eqg. (2). WheRy is
closer to 1, a better workload balance is achieved. The gearampactnes® is calculated following Eq. (5). The
average separator angle deviathpiis calculated following Eq. (8). Note that for each of thdwee termsthe smaller
the measured value is, the bettérom these experiments, we can see that:



10 W. Yu and X. Li Procedia Engineering 00 (2015) 000—000

. b
AV O H 2
@ @
A / \Y)/ ,4/: ;’Hi\?
£ (0
LQ/‘: ;’*O\:‘ ‘F@,\: :H'\ |
R \&\ N \\J,f\%\ Y. /)
U )4 s
(e) (h)

Fig. 6: (a-d) Partitioning the key model into 8 subregionsgslirectL.,-CVT, METIS, MADD, and our_,-CVT-GP algorithm. (e-h) Partitioning
the pipe model into 16 subregions using diregtCVT, METIS, MADD and our algorithm.

Table 2: Decomposition quality comparison (the key and pigelel): directL.,-CVT, METIS, MADD and ourL.,-CVT-GP method (initialized
4000 CVT Cells).Ns is the number of subregions. Our method has comparable @aztkbalance and average compactness, whiléoisrup
to about 50% and 55% smaller than the METIS method on key grelmbdel respectively; oy is 20% and 15% smaller than MADD on two
models respectively. Compared with, method, ouRy is 40% smaller.

Key Lo-CVT METIS MADD Our Method (4000 cells)

Ns 32 128 1024 32 128 1024 32 128 1024 32 128 1024
Rw 2.31 2.01 1.92 1.06 1.03 1.02 1.21 1.13 1.08 1.08 1.06 1.04
Rc 3.93 13.25 104.3 3.61 12.21 93.31 3.98 14.26 104.91 3.85 13.57 105.21
g 0.2%0.14 0.1%0.15 0.1%0.14 | 0.400.24 0.320.26 0.410.21 | 0.360.16 0.320.20 0.2%0.19 | 0.160.14 0.170.15 0.1%0.14
Pipe L,-CVT METIS MADD Our Method (4000 cells)

Ns 32 128 1024 32 128 1024 32 128 1024 32 128 1024
Rw 2.39 2.09 1.98 1.07 1.05 1.04 1.27 1.25 1.13 1.14 1.13 1.10
Rc 1.34 4.76 36.51 1.18 4.64 36.37 1.32 5.06 35.48 1.25 4.71 36.42
39 0.220.14 0.1%0.15 0.1%0.15 | 0.410.23 0.320.25 0.420.21 | 0.360.15 0.320.20 0.2%0.21 | 0.180.12 0.1%0.12 0.1%0.11

1) Forworkload balanceMETIS leads to the smalle&y. TheRy of our method is about 5% bigger than METIS.
Rw of MADD is about 10% bigger than ours. The direct CVT partifitg has worst workload balance andRg
is about 55% bigger than ours.

2) Foraverage compactne&g: METIS also leads to the most compact subregions. Fhef our method is about
8% bigger than METIS, but 6% smaller than MADD, and about 2%lnthan direct CVT partitioning.

3) Foraverage separator angle deviatiég our algorithm has the smallest separator angle deviaBong, is 40%
smaller than METIS, 20% smaller than MADD, and about 5% sendlian direct CVT partitioning.

In Conclusion, our algorithm results in significantly
smaller separator angle deviation than the METIS and MADD
method, while preserving good workload balance and com-
pactness. Compared with the direct CVT decomposition, our
algorithm yields 40% smaller workload balance ratio, while
have slightly better the compactness and the separatoe angl
deviation small. This indicates that meshing based on our
decomposition is about 20% faster than that using CVT de-
composition. To achieve similar workload balance, the CVT
method needs to use much more (in our experiments, moreFig. 7: Quad meshing result of the Pipe model, color-coded by
than 4 times) cells. Then as a sidgeet, this will lead to a glements’ scaled Jacob_ian vaIue;. The color from blue to red
significant increase ihs and in singularities of the final quad indicates the mesh quality from high to low.
mesh (see Section 5.3), which is undesirable.

Scale Jacobian
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Fig. 8: (a, b, c) The quad meshes for West Bay (yellow regioban map), Matagorda Bay (red region in bay map), and the Guilexico
respectively. The quad meshes are color-coded in scaletidac
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Fig. 9: (a) The load balance for 512 working processes of tashing of our dataset. (b) The parallel speedup of meshiegeat our algorithm

using 4 to 1024 working processes. The yellow dot line is tleali speedup, and the speed up of our algorithm fiardnt models ranges from
2.78 to 601.5.

5.2. Parallel Computational jgciency

Sub-regions are distributed tdi@irent working processors for simultaneous quad mesh gémetsing advancing
front. We test the parallel computatioffieiency on our datasets: the pipe model (Figure 7), the terraar West
Bay (Figure 8(a)), and the terrain near Matagorda Bay (fid(b)) and the entire ocean region of the Gulf of
Mexico (Figure 8(c)). Figure 9(a) shows the actual meshimg ton each working processor. The working time on
different processors are very balanced during the parallelégac

Table 3: The Runtime Table for fiierent partitioning algorithmsNs is the number of subregions. The runtime is in minute, anthdes the
partitioning, meshing and relaxation time. Usually, the M& is fastest, and our method has the second Ifgsieacy.

Model Key [ Pipe Matagorda West Bay Gulf of Mexico
Ns 16 64 256 1024 16 64 256 1024 16 64 256 1024 16 64 256 1024 16 64 256 102
Lo-CVT 13.92 451 159 0.6p 16.55 543 1.94 0.74 19.25 6.49 2.26 0.9 19.14 6.50 2.18 0.9 26.07 855 3.11 1.2
METIS 13.09 424 149 05p 1554 510 1.82 0.7p 18.13 6.11 2.13 0.86 18.08 6.14 2.06 0.9D0 24.42 8.01 2.91 1.2
MADD 13.69 4.43 156 0.5p 16.27 534 190 0.7 18.94 6.38 2.22 0.90 18.92 6.42 2.15 0.94 2551 8.36 3.04 1.2
Our 13.60 440 155 0.5816.07 528 1.88 0.7p 18.78 6.33 2.20 0.8P 18.70 6.35 2.13 0.98 25.27 8.29 3.01 1.2

FOTO T &

We also run the experiments by changing the number of woriogessors. The total run time is shown in Table 3.
METIS leads the fastest total running time, Our algorithmabeut 7% slower than METIS, 1% and 3% faster than
MADD and direct CVT respectively. Ideally, when the comgida is evenly distributed to each processor, the speed
up would beT/D, whereT is the total time cost of our algorithm without paralleliat, andD is the number of
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processors. But there are overheads of this divide-andtmnpipeline, including the partitioning, data transriaiss

and post-processing. The workload balancing affects the speed-up performance. Figure 9 (b) plots the speedu
of our algorithm on dferent models. The yellow dot line is the ideal speedup, anéigarithm s’ parallel speed up
ranges from 8 to 6015 when 4 to 1024 processors are used, respectively. Théiguairtg time usually takes up to
30% of the total time. To improve the meshing quality neardbearator, we apply a Laplacian relaxation [35] near
the separators after individually generated meshes argadetHence, a smallérs will reduce this post-processing
time. In our experiments, the relaxation takes about 4%efdkal computation time.

5.3. Meshing Quality Comparison

Model (Ns) Sequential Algorithm Lo-CVT METIS MADD Our Method
Key (32) 0.97/0.13/0.39/ 35 0.98/0.14/0.38/ 233 0.93/0.27/0.23 411 0.97/0.18/0.23/ 226 0.98/0.13/0.38/ 216
Pipe (16) 0.97/0.04/0.31/ 34 0.97/0.04/0.30/ 55 0.94/0.09/0.23/ 128 0.95/0.07/0.23/84 0.97/0.04/0.30/ 50
Matagorda Bay (512) - 0.97/0.04/0.35/325 0.93/0.16/0.21/ 413 0.96/ 0.08/0.27/346 0.97/0.04/0.35/305
West Bay (512) 0.96/ 0.0 0.36/ 235 0.93/0.12/0.24/ 562 0.95/0.07/0.28/ 321 0.98/0.09 0.36/ 225
Gulf of Mexico (1024) 0.97/0.04/0.36/3158 | 0.96/0.15/0.21/3491 | 0.96/0.09/0.23/3201 | 0.98/0.04/0.36/ 3104

Table 4: Mesh Quality Comparison between the sequentiahimgslgorithm,L.,-CVT, METIS, MADD, and our algorithm. The sequential
algorithm applies the advancing front without partitiggrirand it only works on small models such as the Key and Pie.is the number of
subregions. The four values: (1) average, (2) standarctienj and (3) minimum of the scaled Jacobian, and (4) thebeurof singularities are
listed to show meshing quality. The scaled Jacobian of owhnieecomparable to the sequential algorithm, but we have 12@%& singularities.
The average and minimal scaled Jacobians of our algoriterbhG#6 and 4% better than METIS and MADD, respectively. Owydizrities are 40%
and 20% fewer than METIS and MADD. Compared with-CVT, our algorithm leads to about 4% better average andmahscaled Jacobians
and 8% fewer singularities.

Table 4 compares the quality of final quad meshes generat#itebgequential algorithm and four parallel algo-
rithms using dfferent partitioning methods. The sequential algorithm i@gpghe advancing front to generate quad
mesh without partitioning. For large model such as Matagddy, West Bay and Gulf of Mexico the sequential
algorithm failed to get a result. For each quad mesh, we cterfpur values, the (1) average, (2) standard deviation,
and (3) minimum of scaled Jacobian, and (4) the number ouginigies. Ideally, the scaled Jacobian should be 1.
The scaled Jacobian of our mesh is comparable to the seguelgtorithm, but we have 20% more singularities.
Compared with other partitioning techniques, our averagknainimal scaled Jacobians are 10% and 4% better than
METIS and MADD respectively. Our singularities are 40% af&fewer than METIS and MADD. Compared with
L.-CVT, our algorithm leads to about 4% better average andmahscaled Jacobians and 8% fewer singularities.
These experiments show that our algorithm produces highality quad meshes than other partitioning algorithms.

6. Conclusions

We present a parallel quad mesh generation pipeline foedacgle 2D geometric regions. A main contribution of
this work is the solving of data partitioning witlitective incorporation of the geometric constraint on angkgsieen
separators. After partitioning, subregions are distedub diferent processors for parallel mesh generation through
advancing front. Finally, after composition, post-pragirg is performed near partitioning boundaries for refineime
We evaluate our partitioning and mesh generation algorithmlifferent experiments. Compared with other data
partitioning stratifies, our new algorithm leads to bett@tition result and final meshing quality.

In the future, we will generalize this parallel pipeline &tructured meshing of curved 2D manifolds and 3D solid
regions. We will also investigate parallel meshing aldoris with controlled singularity numbers and distributions
For this purpose, singularity estimation needs to be inm@ied in partition optimization; tessellation of subrets
may be computed through parameterization-based meshrgoiish algorithms [36][37] which globally control the
singularity distributions; and post-processing thatw#ithe merging of nearby singularities may also be useful.
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